登上Nature子刊封面:英特尔神经芯片实现在线学习

芯片全集:最优质的7家芯片企业(研究报告合集)

本分析合集包括:韦尔股份、闻泰科技、北京君正、圣邦股份、汇顶科技、卓胜微、长电科技 一、韦尔股份 2018年5月,韦尔股份筹划收购豪威,最新公布的交易方案为,以135.12亿元交易价格合计收购北京豪威85.53%股权、思比科42.27%股权和视信源79.93%股权;此外

机器之心报道

参与:泽南、蛋酱

神经形态芯片真的可以模拟人脑吗?最近一期《自然机器智能》的封面研究向我们展示了这一可能性。

近日,来自英特尔和康奈尔大学的研究者宣布,团队已经在神经形态芯片 Loihi 上成功设计了基于大脑嗅觉电路的算法,实现了在线学习和强记忆力能力。这项研究发表在最新一期自然杂志子刊上《Nature Machine Intelligence》上,并成为封面文章。

论文地址:https://www.nature.com/articles/s42256-020-0159-4

在该研究中,研究者展示了英特尔神经形态研究芯片 Loihi 在存在明显噪声和遮盖的情况下学习和识别危险化学品的能力

该系统基于英特尔的神经形态研究芯片 Loihi 和 72 个化学传感器,Loihi 被编程为模仿嗅球中神经元的运作——后者是区分不同气味的大脑区域。研究人员表示,这一系统未来可被用于监视空气中的有害物质,嗅出隐藏的毒品或爆炸物,或帮助进行医学诊断。

论文第一作者,英特尔实验室的 Nabil Imam 和 Loihi 测试版神经芯片。该团队正在芯片上构建算法模仿人类闻到某种气味后大脑神经网络中发生的情况。

人工嗅觉实现在线学习和记忆能力

在系统中,传感器对各种气味的反应被传送至 Loihi,由其芯片电路对嗅觉背后的大脑电路进行模拟。Loihi 芯片迅速掌握了 10 种气味各自的神经表征,其中包括丙酮、氨和甲烷,即使有强烈的环境干扰也能识别出这些气味。

Loihi 仅需单一样本便可学会识别每一种气味,且不会破坏它对先前所学气味的记忆。与传统的最先进方法相比,Loihi 展现出了极其出色的识别准确率。传统的深度学习解决方案要达到与 Loihi 相同的分类准确率,学习每类气味需要 3,000 倍以上的训练样本。后者是一个耗费大量时间和算力的过程,而且经常会在遇到全新类型目标时识别失败。

作为这一研究的基础,英特尔 Loihi 芯片架构与传统 CPU、GPU 甚至深度学习芯片 TPU 相比都更加接近于大脑的工作机制。英特尔一直希望这种新形式的芯片可以完成目前 AI 系统无法完成的任务,或至少实现更快的速度。

与当前人工智能领域的人工神经元不同,Loihi 的神经元以数字表达的「脉冲」传输信息,这与人类大脑的处理模式更加类似

模型架构和信号编码。

三星量产512GB eUFS 3.1芯片 旗舰机标配速度更快

现在,UFS 3.0芯片已经成为旗舰机的标配,不过未来我们在旗舰机上或许还能看到速度更快的芯片。今天,三星电子正式宣布已开始量产业界首款用于旗舰机的512GB eUFS 3.1芯片,与此前的三星eUFS 3.0芯片相比,eUFS 3.1芯片的写入速度是以前的三倍。 三星eUFS 3.1

英特尔高级研究科学家 Nabil Imam 表示:「下一步是将这种方法应用到更广泛的问题上,从感官场景分析到计划或决策等抽象问题。如果我们理解了大脑的神经回路如何解决这些复杂的计算问题,就可为高效和鲁棒的机器智能设计提供重要线索。」

但在此之前,还需要克服一些挑战。系统需要实现将不同但类似的气味归类到同一组,比如它需要分辨出加利福尼亚的草莓和欧洲的草莓是同一种水果。

Nabil Imam 表示:「这些问题超出了我们目前在实验室中已完成的演示实验的范围,也是我们在未来几年内希望解决的问题,使其成为一种能够解决实际问题的产品。」

Loihi:「人脑模拟器」

人类大脑由大约 860 亿个互相连接的神经元组成,英特尔去年 7 月正式推出的「Pohoiki Beach」系统已经做到了 830 万神经元,并已供广大研究人员使用,它包含 64 块 Loihi 研究芯片。

通过Pohoiki Beach,研究人员可以利用英特尔的 Loihi 研究芯片开展实验。在稀疏编码、图搜索和约束满足问题等专业应用领域,Loihi 能让用户以千倍于 CPU 的速度和万倍于 CPU 的效率处理信息。

英特尔研究院院长 Rich Uhlig 手持一块英特尔 Nahuku 基板,每块基板包含 8 到 32 块英特尔 Loihi 神经形态芯片。英特尔最新的神经形态系统 Pohoiki Beach 由多块 Nahuku 基板组成,含 64 块 Loihi 芯片。

在硬件之上,英特尔还提供了 Loihi 开发工具链:包括 Loihi Python API、编译器和一组用于在 Loihi 上构建和执行 SNN 的执行库。这些工具提供了自定义构建神经、突触计算图的方法,可调整诸如衰减时间、突触权重、脉冲阈值等变量,也可通过自定义学习规则注入外部脉冲来模拟计算图。

英特尔称,与传统处理器相比,Loihi 处理信息的速度要快上 1000 倍,而效率则要高上 1 万倍。在处理某些类型的优化问题上,神经形态处理器的速度和能效要比普通 CPU 强三个数量级以上。此外,英特尔还表示 Loihi 在扩展 50 倍时,在保证算力的情形下仅需增加 30% 的能耗——而常规架构的芯片需要 50 倍能耗。在进行同步定位和映射等操作时,新的芯片比常规 CPU 节省 100 倍能耗。

与人脑中的神经元类似,Loihi 拥有数字轴突用于向临近神经元发送电信号,也有树突用于接收信号,在两者之间还有用于连接的突触。英特尔表示,基于这种芯片的系统已经被用于模拟皮肤的触觉感应、控制假腿和玩桌上足球等任务

因为效率颇高,Pohoiki Beach 和 Loihi 有望成为人工智能算法发展的新动力。英特尔称,新形态的芯片可以在图像识别、自动驾驶和自动化机器人等方面带来巨大技术提升。

面向未来,英特尔表示即将推出一个更大的 Loihi 系统——Pohoki Springs,该系统将拥有超过 1 亿神经元、1 万亿个突触,预计包含 768 颗芯片、1.5 万亿个晶体管。下一代神经形态系统将提供「前所未有的」性能和效率。

参考内容:

https://www.nature.com/articles/s42256-020-0159-4

https://newsroom.intel.com/news/how-computer-chip-smell-without-nose/#gs.0166rj

https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/intels-neuromorphic-nose-learns-scents-in-just-one-sniff

本文源自头条号:机器之心Pro如有侵权请联系删除

受疫情影响,LED芯片有望涨价

中国大陆LED芯片厂产能在全球占比近六成,由于受到新冠肺炎疫情影响,LEDinside指出,芯片原物料如蓝宝石基板的供给恐因此中断,加上前阵子停工及人力生产成本提升,预估芯片价格在3月过后有望开始涨价。 LEDinside报告指出,LED产业2019年仍处于供过于求的状